

HEAD OFFICE YANGMEI PLANT

No.858, Sec.5, Kuaisu Rd., Yangmei Dist., Taoyuan City 32661, Taiwan (R.O.C)

TEL: +886-3-4202555 FAX: +886-3-4201565

DAXI PLANT

No.269, Sec.2, Renhe Rd., Daxi Dist., Taoyuan City 33547, Taiwan (R.O.C)

TEL: +886-3-3801121 FAX: +886-3-3800098

TAIPEI OFFICE

26F., No.95, Sec.2, Dunhua S. Rd., Da-an Dist., Taipei City 10682, Taiwan (R.O.C)

TEL: +886-2-66366100 FAX: +886-2-66360706

SALES OFFICE (Central Region)

No.13, Gongyequ 10th Rd., Xitun Dist., Taichung City 40755, Taiwan (R.O.C)

TEL: +886-4-23595135 FAX: +886-4-23594576

⊕ www.pewc.com.tw x service@pewc.com.tw

*Designed and Manufactured in Taiwan by PEWC, Inc.

*The product information and specifications are subject to change without prior notice.

Vanadium Redox Flow Battery System

Renewable energy generation is crucial for sustainable development, making energy storage systems essential for stabilizing green energy integration into the grid. Vanadium redox flow battery (VRFB) systems, known for their high safety, 20-year lifespan, and flexible performance, can regulate load, shave peaks, fill valleys, and smooth power output to maintain grid balance and stability. They also contribute to mitigating grid impact and provide black start capabilities.

Pacific Electric Wire & Cable Co., Ltd. (PEWC) has partnered with Sumitomo Electric Industries, Ltd. (SEI) to introduce SEI's VRFB technology. PEWC aims to develop safe, long-lasting energy storage systems for both outdoor and indoor applications, addressing electricity backup and usage needs.

Applications

Grid	Transmission & Distribution	Behind the Meter	
Expanding grid integration	Frequency regulation	Frequency regulation	
Reducing peak load	Black start capabilities	Black start capabilities	
 Regulating frequency and voltage 	 Deferring transmission and distribution investments 	Voltage stabilizationEmergency weather response	
 Responding to extreme weather emergencies 	Voltage stabilizationEmergency weather response	Emergency weather response	

Benefits

- **High Safety**
 - Non-flammable electrolyte, no hazard management equipment is required
- Long Lifespan Over 20 years (> 20,000 cycles)
- Flexible Discharge Intra-day and multi-day flexibilities
- **Deep Discharge Capability** 100% depth of discharge

Principle

A redox flow battery charges and discharges by circulating vanadium sulfate electrolyte between a tank and battery cells. The stack, composed of multiple cells in series, achieves high voltages.

- **Environmental Friendliness** Recyclable and reusable vanadium electrolyte
- Low Life-Cycle Cost (LOCE) No battery replacement necessary
- **Easy Operation & Maintenance:**
 - Unlimited charging /discharging cycles
 - Accurate state-of-charge estimation
- Scalable Design

Independent modules for power or capacity expansion, suitable for outdoor and indoor use

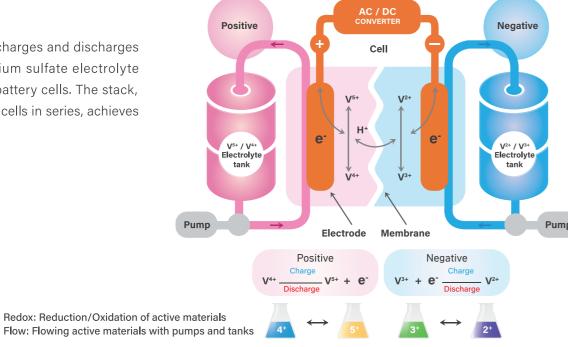


Fig.1 Schematic structure of VRFB

Structural diagram of the vanadium redox flow battery system

The battery unit includes a cabinet with positive and negative electrodes, a stack, a pump, and a heat exchanger. Integrated with a battery management system (BMS) and a power conversion system (PCS), forming a vanadium redox flow battery (VRFB).

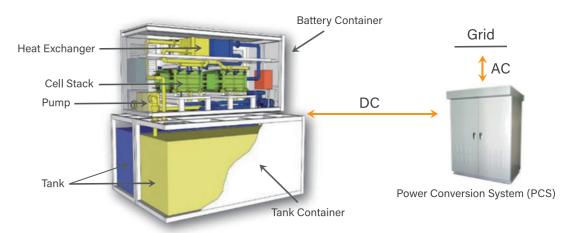
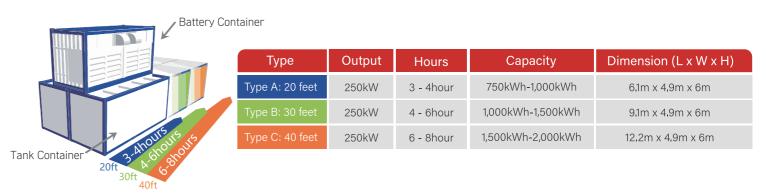
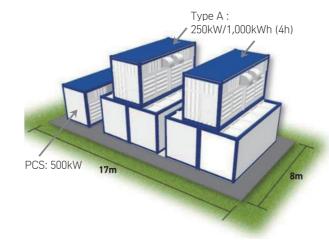




Fig.2 Structural diagram of container type energy storage system

Battery system specifications and space requirements

Output	Hours	Capacity	LxM
1MW	4hour	4MWh	15m × 17m
1MW	6hour	6MWh	21m × 17m
1MW	8hour	8MWh	27m × 17m
10MW	4hour	40MWh	85m × 27m
10MW	6hour	60MWh	103m × 27m
10MW	8hour	80MWh	131m × 27m